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Growth model with a finite number of orientations on a linear substrate
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The aim of this work is to present a simple model for studying the texture formation during the electrodepo-
sition process. Monte Carlo simulations are used to describe the formation of the deposits, and the scaling
concepts are employed to characterize their growth and roughness properties. In this model particles are
randomly deposited with an orientation chosen from a discrete set of possible directions. The final orientation
of the deposited particle is determined by its interaction with the first neighboring particles and by the
temperature of the substrate. Particle interactions are chosen accordingistéite ferromagnetic Potts model
Hamiltonian. Simulations were performed on+1) dimensions, and for several values of temperature and
substrate size. The results of the simulations lead to different behaviors for the model at low and high
temperatures. At high temperatures, the scaling expoier?.5 was found, which characterizes a pure ran-
dom deposition model. However, at low temperatures, we observed that after a given time interval, particles
start orienting in a fixed direction and the interface width saturates just during a time window. Suddenly, a
fluctuation makes the interface width increase again, that is, we never observed a full saturation. On the other
hand, at zero temperature, the system reaches an absorbing state with all the layers occupied by particles
oriented in the same direction. At zero temperature we famd.90, o= 1.80, and3=0.99 for the dynamic,
roughness, and growth exponents, respectively. The scaling exponents are consistent with a self-affine behavior
of the model and they are in agreement with the well known Family-Vicsek scaling relation.
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[. INTRODUCTION simple ones. For most of the kinetic models, the surface
growth is accompanied by the fluctuations of the height in-
In the recent years a lot of attention has been devoted tterface. This property is defined by
the study and understanding of the deposited structures
formed by electrodepositiofil—4]. The texture of the elec- 1
trodeposits has attracted the interest of researchers since it is W2(L,t)=— E [h(r,t)—h(t)]% (1)
known that some deposits of metallic materials such as cop- L2
per, silver, and iron have fiber texturEs—7]. A change in
texture can give to the deposits different mechanical properwhereh(r t) is the height at the site posmdnand timet.
ties, such as wear resistance, corrogi®h The fluctuations of the height interface, also called surface
Properties associated with the different textures are rewidth, increase as a power law«=t? at short times, and
lated to the distinct crystallographic planes seen on the ele@fter long times, reach a steady state and behawW-ak*,
trodepositg9]. In this sense if the electrodeposit texture iswhich depends on the lattice size There is also an expo-
controlled during the electrodeposition process, materiahentz related to the crossover tintg between the two re-
properties could be improved. Then, it may be relevant tagyimes, which is defined bt.«L? Based on these behaviors,
direct the deposition in order to obtain a desired crystalloFamily and VicseK15] proposed the general scaling relation
graphic plane. However, this can be a matter of considerablfor the surface width,
labor because the phenomenon of electrodeposition is very

complex and involves a lot of variables, as for example, so- W(L,t)=Lf(tL~?), 2)
lution concentration, ion diffusion, types of substrate and
electrolyte, nucleation rates, etc. where f(x) is a scale function, which must satisfy the fol-

In this work we propose a simple model for the depositionlowing asymptotic properties: ik<1, f(x)<x? and if x
of particles to be studied by Monte Carlo simulations and>1, f(x) is constant. The exponents, 8, and z are not
using the Metropolis prescriptioflO] to map the texture independent and they are related By a/z.
evolution during the electrodeposition process. We have also For the model we consider in this work, we assume a
considered in this study the application of the finite size scalrandom deposition of particles over an initially flat substrate.
ing arguments to describe the surface growth. The scalingfter adsorption, the main axis of the particle will be ori-
laws of the self-affine surfaces have been observed in mamgnted in a given direction, chosen from a seyadfirections
different growth processes such as molecular beam epitaxparallel to the surface. As we will see in the following sec-
electrodeposition, bacterial growfhl—-14), etc. Apart from tion, the deposition does not take into account the existence
the intrinsic technological interest, the understanding of theof overhangs, and it is known in literature as the solid on
solid growth is of a considerable interest, because it can prasolid restriction[16]. All sites below the new incorporated
vide us with important clues to the way in which complex site are necessarily occupied according to the SOS con-
structures are formed in nature through the aggregation dftraint. However, the final orientation of the particle is not
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completely random, the new adsorbed particle relaxes to ground state level. So, we always havE>0. According to
given direction, which minimizes its free energy. This mini- the Metropolis prescription, the first excited level will be
mization depends on the interaction energy with its neigh€hosen with probability?, whereP is given by the Boltz-
bors and on the temperature of the substrate. In order tmann factorP=exp(—AE/kgT). Otherwise, we choose the
describe the finite seat of possible orientations we consider level of lowest energy. In the calculation Bf T is the tem-
a ferromagnetic Potts modEl7] to account for the interac- perature, which is measured in units kg, andkg is the
tions. In this way, if a pair of nearest neighbor sites is in theBoltzmann constant. If more than one sté&eientation be-
same directior(statg there is no cost in energy. longs to the selected energy level, then we choose, with the
In the following section, we will present the model, the same weight, what will be the resulting orientation of the
variables we have defined, and the details of the Monte Carlparticle deposited. This works very well at low temperatures,
simulations, to describe the time evolution of the surfacevhere the probability to find states with energy larger than
growth. In Sec. Il we present the results of our simulations2J is very small, and only the first excited state is of interest.
applied to growth in (# 1) dimensions, and we compare On the other hand, at intermediate and high temperatures, we
them with the results we have found for a similar modelcalculated the probability for each one of the orientations and
previously studied in (2 1) dimensiond18]. We also de- the selected direction for the particle was done according to
termined the behavior of the growth exponent as a functionhe heat-bath algorithm. This is particularly useful when the
of the number of orientations and temperature. Finally, innumber of orientationg;, is large.

Sec. IV, we present our main conclusions. We recorded the orientations inside each layer, which cor-
responds to a unit of time in our Monte Carlo experiment,
Il. MODEL AND MONTE CARLO SIMULATIONS and we defined a variable that gives the mean orientation per

layer, S;(t). Then, the mean orientation in the layeat the
We take as our substrate a linear chain of dizeThe timetis
formed deposit is a two-dimensional structure, so we have a
growth model on (¥ 1) dimensions. Initially all the sites of L
the linear chain are empty, and we start depositing the next (S())=11LY, O(i,b). (4)
layer just after all the sites of the actual layer have been =1
occupied. We considered periodic boundary conditions in the

direction peroendicular to the arowth surface. The whole We also calculated the fluctuations in the orientation,
Perp 9 ) around the mean valug(t), as a function of the timeand

process proceeds as follows. An empty site is rand_omly Choﬁnear sizel. It is defined by the following root mean square:
sen on the current layer and a particle is deposited there.

Then, the particle looks for the best orientation, which is
selected according to the orientation of its first neighbors and 1 -

the substrate temperature. The interaction energy between a Wi(L,t)= \/E > [0, —(Si(1))]2. 5
particle at the siteé and its nearest neighbors is given by =1

For each lattice siz&é, we can follow in time the evolu-
tion of these layer fluctuations during the growth process,

Einz [1-5(0;,0)], (3) thatis, we write
(i)
t
where the sum is over the nearest neighbors of the,sited W(L,t)= E Wi(L,j). (6)
O; is the orientation of the particle axis at this site. The i=1

variableO; can take one of the values in the set (1,2 ,q),

5(0,,0,) is the Kronecker delta function, ani0 mea- We will show in the following section that the function

W(L,t) exhibits a self-affine behavior, and the growth expo-
articles at the sitesandi. For example. if the particles at ‘ents can be calculated from the scaling relation of Family
particles € sitesand). F xample, It the p and Vicsek. WhileW(L,t) can saturate at a finite tempera-

the sites andj are oriented in the same direction the energy

is zero, otherwise, in the case of different orientations, thé[ure for the same model in (21) dimensions, the saturation

energy isJ. For the deposition onto a linear substrate, the. possible only at zero temperature in1) dimensions,
gy 1s.. P . L » "%We have started our deposition process with an initial condi-
maximum number of neighbors of a given site is th(weo

. ) . . tion of a flat substrate, and the simulations were performed
nggfvstth?se:gggfrs in the actual layer, and one neighbor ‘”%)r lattices of sizel =100, 200, 300, 400, 500. Depending

When the particle arrives at the top of thé column, we on the size of the lattice, we need to consider up to 200

compute the value of; for each one of they orientations statistically independent samples in order to get reliable val-

that would be possible at this column. As the maximum numJes for the averages of interest. We present explicit results

ber of neighbors is three the possible value€pfre 0, J, for the number of orientationg}=2, 3, 4, and 5.
2J, and 3. Then, we select the orientation having the low-
est energy and that corresponding to the first excited level.
Following this, we determind E, which is defined as the In Figs. 1a) and Xb) we plot the functionW(L,t), for
difference of energy between the first excited and the local =300, g=2, at T=0 and at very high temperatures, re-

Ill. RESULTS
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FIG. 1. Root mean square of the functigv as a function of
time t, measured in MCs, fog=2, L=300, and average over 150
samples(a) T=0, where saturation is observe@l=0.99. (b) High
temperature T=3) where the surface width does not saturge,
=0.49.

spectively. Figure (g) shows thatW(L,t) saturates at zero
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FIG. 2. Root mean square of the functi¥vi as a function of
time t, measured in MCs, foq=5, L=200 for a selected sample.
T=0.085, and the surface width does not saturate. The synibols
over the plateaux represent the orientations of the particles. For this
very low temperature3=0.99.

any characteristic texture for any sample of the ensemble at
high temperatures. The behaviorsTat 0 and at high tem-
peratures are very similar to those seen if-() dimensions
[18]. However, there is an important difference in the behav-
ior of W(L,t), in (1+1) and (2+1) dimensions, at low
temperatures. While saturation is observed for the model in
(2+1) dimensions, for the model in (11) dimensions
saturation occurs only at zero temperature.

For instance, in Fig. 2, we can see the behavior of the
function W(L,t) at a very low temperature, but different
from zero. This figure exhibits a typical route followed by
any sample. The roughness does not saturate, despite the
presence of some plateaux of variable time extent, where the
layers contain particles oriented in the same direction. That
is, the system reaches a well defined texture. Therefore, for
some time windows, we observe some quasisteady states
where the deposited particles exhibit the same orientation.
However, for this low-dimensional system, fluctuations ap-
pear and some high energy states are populated. Depending

temperature, and in this case it is possible to calculate then the fluctuation sizes, the system can eventually change
roughness exponeit associated with the steady state. After from one orientation to a different one. In Fig. 2, wheye
a saturation time, where each sample of the ensemble ae=5 orientations are considered, we indicate over the pla-

quires a well defined textur@ fixed orientation for the par-

teaux some of the orientations seen in the intervalt &4

ticle axi9, W becomes constant. For this zero temperaturex 10°. Then, in the region of the plateaux we have an appar-

the growth exponent i8=0.99+0.01. For the other orien-

ent saturation. In this figure the first plateau appeare@ at

tations the values we found fgr are the same. We have also =4 orientation, then after some fluctuations the system re-

measured the exponentsandz. We have found that for all
the q orientations consideredy=1.80+0.15 andz=1.90

turned to O=4 orientation (second plategu Sometimes,
strong fluctuations occur and the system is taken from a

+0.15. That is, the exponents related to the growth and satigiven orientation to a different one, as that happening be-
ration are not sensitive to the number of possible orientationgveen 1.5¢ 10°<t<2.0x 10° in Fig. 2. We have also calcu-
of the particles over the substrate. Once we have reached thated the growth exponeng at the initial times where we
saturation regime, all the new deposited particles will be ori-have a flat substrate and from a given plateauVes- Vo)

ented in the same direction. On the other hand, Fip) 1
shows that at high temperatures the functiMiL,t) does

not saturate, and only the growth expongntan be defined.
We have foundg3=0.50*+0.01, which is typical of a random

~(t—tg)P. In this expressiotg is the instant where we are
leaving a given plateau whose interface widthig . For all

the cases studied we fouyd=0.99+0.01, the same value as
that at zero temperature. We cannot calculate the other expo-

deposition model. The new adsorbed particle relaxes almostents because the system never reaches an absorbing state
independently of its neighborhood, and we did not observas in the (2+1) dimensions. At very low temperatures in
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FIG. 3. (a) Surface widthw as a function of tim&, measured in
MCs, forq=2, L=100, 200, 300, 400, and 500, afid=0. Aver-
ages are over 150 samplél) Data collapse ofa) according to the
Family-Vicsek scaling relation. Diamondd. € 500), squaresl(
=400), down triangles L(=300), circles [=200), and up tri-
angles [ =100).
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FIG. 4. Behavior of the growth exponegtas a function ofT
for different values of the number of orientations Squares ¢
=5), Down triangles §=4), circles =3), and up trianglesq
=2). The line is just a guide to the eyes.

surface for the times of observation we have considered.
Therefore, this growing system does not exhibit a texture
with a well defined orientation of the deposited particles at
any finite temperature.

IV. CONCLUSIONS

We have considered a very simple model to describe the
texture evolution of the deposits formed by electrodeposition
processes. In our model particles are randomly deposited
onto a substrate, and they locally relax with their main axes
pointing in a given direction. The final orientation depends
on the substrate temperature and interaction energy with the
neighboring particles. The lowest energy states of the system

(2+1) dimensions, the fluctuations in the orientation arecorrespond to nearest neighbor particles oriented in the same
only of short range, and do not allow the system to escapdirection. The model is mimicked by a Potts model gf

from the absorbing state.
Figure 3a) is a typical plot of the functionV(L,t), for

states, wherg| gives the possible directions for the orienta-
tion of the particles. We recorded the orientations for each

g=2, for all the studied lattice sizes at zero temperaturdine and calculated the mean orientation and fluctuations as a

where the saturation is observed. The data of Fig. &n be

function of time, size of the system, and number of orienta-

collapsed into a single curve that fits very well to the Family-tions. We have investigated the casgs2, 3, 4, and 5 for

Vicsek scaling relation. Then, Fig(l® shows the data col-

the lattice sized. =100, 200, 300, 400, and 500. At zero

lapse, and from which we can find the critical indices for thetemperature this growth model satisfies the well known
growth. For theg=2 case of Fig. @), the best values of the Family-Vicsek scaling relation for all the values@fand our

exponents that allow this fitting are=2.00 ande=1.90. As

estimate for the exponents andz is «=1.80+0.15 andz

expected from the Family-Vicsek scaling law, the exponents=1.90+0.15. The growth exponent that characterizes the
a, B, andz are not all independent. As we can see from oursystem behavior at the initial times §=0.99+0.01. At

dataB=alz.

high temperatures we noted that the surface width does not

Finally, in Fig. 4, we show the values we have found forsaturate, and the system does not exhibit a texture with a

the growth exponengB as a function of temperature aid

well defined orientation of the deposited particles. In these

We observe that the behavior of this exponent as a functionases the layers are occupied for all the possible orientations,
of temperature is almost insensitive to the valuesj.oFor  which is characteristic of the random deposition model,
temperatures less than 0.25+=0.99+0.01, however, itisa where we foundB=1/2 for the growth exponent. On the
decreasing function of and, at high temperatures, the ex- other hand, at low temperatures, the system never enters into
ponent becomes 1/2, as for the random deposition model. Asn absorbing state, with a well defined texture. We observed
we have pointed before, for any temperature different fromguasisteady states just during short time intervals. Fluctua-
zero, the fluctuations do not allow for a saturation of thetions in orientation in this (3 1) system are always present
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