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Growth model with a finite number of orientations on a linear substrate
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Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900, Floriano´polis, SC, Brazil

~Received 16 September 2003; published 27 February 2004!

The aim of this work is to present a simple model for studying the texture formation during the electrodepo-
sition process. Monte Carlo simulations are used to describe the formation of the deposits, and the scaling
concepts are employed to characterize their growth and roughness properties. In this model particles are
randomly deposited with an orientation chosen from a discrete set of possible directions. The final orientation
of the deposited particle is determined by its interaction with the first neighboring particles and by the
temperature of the substrate. Particle interactions are chosen according to theq-state ferromagnetic Potts model
Hamiltonian. Simulations were performed on (111) dimensions, and for several values of temperature and
substrate size. The results of the simulations lead to different behaviors for the model at low and high
temperatures. At high temperatures, the scaling exponentb50.5 was found, which characterizes a pure ran-
dom deposition model. However, at low temperatures, we observed that after a given time interval, particles
start orienting in a fixed direction and the interface width saturates just during a time window. Suddenly, a
fluctuation makes the interface width increase again, that is, we never observed a full saturation. On the other
hand, at zero temperature, the system reaches an absorbing state with all the layers occupied by particles
oriented in the same direction. At zero temperature we foundz51.90, a51.80, andb50.99 for the dynamic,
roughness, and growth exponents, respectively. The scaling exponents are consistent with a self-affine behavior
of the model and they are in agreement with the well known Family-Vicsek scaling relation.
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I. INTRODUCTION

In the recent years a lot of attention has been devote
the study and understanding of the deposited struct
formed by electrodeposition@1–4#. The texture of the elec
trodeposits has attracted the interest of researchers since
known that some deposits of metallic materials such as c
per, silver, and iron have fiber textures@5–7#. A change in
texture can give to the deposits different mechanical prop
ties, such as wear resistance, corrosion@8#.

Properties associated with the different textures are
lated to the distinct crystallographic planes seen on the e
trodeposits@9#. In this sense if the electrodeposit texture
controlled during the electrodeposition process, mate
properties could be improved. Then, it may be relevant
direct the deposition in order to obtain a desired crysta
graphic plane. However, this can be a matter of consider
labor because the phenomenon of electrodeposition is
complex and involves a lot of variables, as for example,
lution concentration, ion diffusion, types of substrate a
electrolyte, nucleation rates, etc.

In this work we propose a simple model for the deposit
of particles to be studied by Monte Carlo simulations a
using the Metropolis prescription@10# to map the texture
evolution during the electrodeposition process. We have
considered in this study the application of the finite size sc
ing arguments to describe the surface growth. The sca
laws of the self-affine surfaces have been observed in m
different growth processes such as molecular beam epit
electrodeposition, bacterial growth@11–14#, etc. Apart from
the intrinsic technological interest, the understanding of
solid growth is of a considerable interest, because it can
vide us with important clues to the way in which compl
structures are formed in nature through the aggregation
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simple ones. For most of the kinetic models, the surfa
growth is accompanied by the fluctuations of the height
terface. This property is defined by

W2~L,t !5
1

L2
(

rW
@h~rW,t !2h̄~ t !#2, ~1!

whereh(rW,t) is the height at the site positionrW and timet.
The fluctuations of the height interface, also called surfa
width, increase as a power lawW}tb at short times, and
after long times, reach a steady state and behave asW}La,
which depends on the lattice sizeL. There is also an expo
nent z related to the crossover timetc between the two re-
gimes, which is defined bytc}Lz. Based on these behavior
Family and Vicsek@15# proposed the general scaling relatio
for the surface width,

W~L,t !5La f ~ tL2z!, ~2!

where f (x) is a scale function, which must satisfy the fo
lowing asymptotic properties: ifx!1, f (x)}xb and if x
@1, f (x) is constant. The exponentsa, b, and z are not
independent and they are related byb5a/z.

For the model we consider in this work, we assume
random deposition of particles over an initially flat substra
After adsorption, the main axis of the particle will be or
ented in a given direction, chosen from a set ofq directions
parallel to the surface. As we will see in the following se
tion, the deposition does not take into account the existe
of overhangs, and it is known in literature as the solid
solid restriction@16#. All sites below the new incorporate
site are necessarily occupied according to the SOS c
straint. However, the final orientation of the particle is n
©2004 The American Physical Society08-1
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completely random, the new adsorbed particle relaxes
given direction, which minimizes its free energy. This min
mization depends on the interaction energy with its nei
bors and on the temperature of the substrate. In orde
describe the finite setq of possible orientations we conside
a ferromagnetic Potts model@17# to account for the interac
tions. In this way, if a pair of nearest neighbor sites is in
same direction~state! there is no cost in energy.

In the following section, we will present the model, th
variables we have defined, and the details of the Monte C
simulations, to describe the time evolution of the surfa
growth. In Sec. III we present the results of our simulatio
applied to growth in (111) dimensions, and we compar
them with the results we have found for a similar mod
previously studied in (211) dimensions@18#. We also de-
termined the behavior of the growth exponent as a func
of the number of orientations and temperature. Finally,
Sec. IV, we present our main conclusions.

II. MODEL AND MONTE CARLO SIMULATIONS

We take as our substrate a linear chain of sizeL. The
formed deposit is a two-dimensional structure, so we hav
growth model on (111) dimensions. Initially all the sites o
the linear chain are empty, and we start depositing the n
layer just after all the sites of the actual layer have be
occupied. We considered periodic boundary conditions in
direction perpendicular to the growth surface. The wh
process proceeds as follows. An empty site is randomly c
sen on the current layer and a particle is deposited th
Then, the particle looks for the best orientation, which
selected according to the orientation of its first neighbors
the substrate temperature. The interaction energy betwe
particle at the sitei and its nearest neighbors is given by

Ei5J(̂
i j &

@12d~Oi ,Oj !#, ~3!

where the sum is over the nearest neighbors of the sitei, and
Oi is the orientation of the particle axis at this site. T
variableOi can take one of the values in the set (1,2, . . . ,q),
d(Oi ,Oj ) is the Kronecker delta function, andJ.0 mea-
sures the degree of relative orientation of the axis of
particles at the sitesi and j. For example, if the particles a
the sitesi and j are oriented in the same direction the ener
is zero, otherwise, in the case of different orientations,
energy isJ. For the deposition onto a linear substrate,
maximum number of neighbors of a given site is three~two
nearest neighbors in the actual layer, and one neighbor
below this layer!.

When the particle arrives at the top of thei th column, we
compute the value ofEi for each one of theq orientations
that would be possible at this column. As the maximum nu
ber of neighbors is three the possible values ofEi are 0,J,
2J, and 3J. Then, we select the orientation having the lo
est energy and that corresponding to the first excited le
Following this, we determineDE, which is defined as the
difference of energy between the first excited and the lo
02160
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ground state level. So, we always haveDE.0. According to
the Metropolis prescription, the first excited level will b
chosen with probabilityP, whereP is given by the Boltz-
mann factorP5exp(2DE/kBT). Otherwise, we choose th
level of lowest energy. In the calculation ofP, T is the tem-
perature, which is measured in units ofJ/kB , andkB is the
Boltzmann constant. If more than one state~orientation! be-
longs to the selected energy level, then we choose, with
same weight, what will be the resulting orientation of t
particle deposited. This works very well at low temperatur
where the probability to find states with energy larger th
2J is very small, and only the first excited state is of intere
On the other hand, at intermediate and high temperatures
calculated the probability for each one of the orientations a
the selected direction for the particle was done according
the heat-bath algorithm. This is particularly useful when t
number of orientations,q, is large.

We recorded the orientations inside each layer, which c
responds to a unit of time in our Monte Carlo experime
and we defined a variable that gives the mean orientation
layer, Sl(t). Then, the mean orientation in the layerl at the
time t is

^Sl~ t !&51/L(
i 51

L

O~ i ,t !. ~4!

We also calculated the fluctuations in the orientatio
around the mean valueSl(t), as a function of the timet and
linear sizeL. It is defined by the following root mean squar

Wl~L,t !5A1

L
(
i 51

L

@O~ i ,t !2^Sl~ t !&#2. ~5!

For each lattice sizeL, we can follow in time the evolu-
tion of these layer fluctuations during the growth proce
that is, we write

W~L,t !5(
j 51

t

Wl~L, j !. ~6!

We will show in the following section that the functio
W(L,t) exhibits a self-affine behavior, and the growth exp
nents can be calculated from the scaling relation of Fam
and Vicsek. WhileW(L,t) can saturate at a finite temper
ture for the same model in (211) dimensions, the saturatio
is possible only at zero temperature in (111) dimensions.
We have started our deposition process with an initial con
tion of a flat substrate, and the simulations were perform
for lattices of sizeL5100, 200, 300, 400, 500. Dependin
on the size of the lattice, we need to consider up to 2
statistically independent samples in order to get reliable v
ues for the averages of interest. We present explicit res
for the number of orientations,q52, 3, 4, and 5.

III. RESULTS

In Figs. 1~a! and 1~b! we plot the functionW(L,t), for
L5300, q52, at T50 and at very high temperatures, r
8-2
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spectively. Figure 1~a! shows thatW(L,t) saturates at zero
temperature, and in this case it is possible to calculate
roughness exponenta associated with the steady state. Aft
a saturation time, where each sample of the ensemble
quires a well defined texture~a fixed orientation for the par
ticle axis!, W becomes constant. For this zero temperat
the growth exponent isb50.9960.01. For the other orien
tations the values we found forb are the same. We have als
measured the exponentsa andz. We have found that for al
the q orientations considered,a51.8060.15 andz51.90
60.15. That is, the exponents related to the growth and s
ration are not sensitive to the number of possible orientati
of the particles over the substrate. Once we have reache
saturation regime, all the new deposited particles will be o
ented in the same direction. On the other hand, Fig. 1~b!
shows that at high temperatures the functionW(L,t) does
not saturate, and only the growth exponentb can be defined.
We have foundb50.5060.01, which is typical of a random
deposition model. The new adsorbed particle relaxes alm
independently of its neighborhood, and we did not obse

FIG. 1. Root mean square of the functionW as a function of
time t, measured in MCs, forq52, L5300, and average over 15
samples.~a! T50, where saturation is observed,b50.99. ~b! High
temperature (T53) where the surface width does not saturateb
50.49.
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any characteristic texture for any sample of the ensembl
high temperatures. The behaviors atT50 and at high tem-
peratures are very similar to those seen in (211) dimensions
@18#. However, there is an important difference in the beh
ior of W(L,t), in (111) and (211) dimensions, at low
temperatures. While saturation is observed for the mode
(211) dimensions, for the model in (111) dimensions
saturation occurs only at zero temperature.

For instance, in Fig. 2, we can see the behavior of
function W(L,t) at a very low temperature, but differen
from zero. This figure exhibits a typical route followed b
any sample. The roughness does not saturate, despite
presence of some plateaux of variable time extent, where
layers contain particles oriented in the same direction. T
is, the system reaches a well defined texture. Therefore
some time windows, we observe some quasisteady st
where the deposited particles exhibit the same orientat
However, for this low-dimensional system, fluctuations a
pear and some high energy states are populated. Depen
on the fluctuation sizes, the system can eventually cha
from one orientation to a different one. In Fig. 2, whereq
55 orientations are considered, we indicate over the p
teaux some of the orientations seen in the interval 0,t,4
3105. Then, in the region of the plateaux we have an app
ent saturation. In this figure the first plateau appeared aO
54 orientation, then after some fluctuations the system
turned to O54 orientation ~second plateau!. Sometimes,
strong fluctuations occur and the system is taken from
given orientation to a different one, as that happening
tween 1.53105,t,2.03105 in Fig. 2. We have also calcu
lated the growth exponentb at the initial times where we
have a flat substrate and from a given plateau as (W2WO)
'(t2tO)b. In this expressiontO is the instant where we ar
leaving a given plateau whose interface width isWO . For all
the cases studied we foundb50.9960.01, the same value a
that at zero temperature. We cannot calculate the other e
nents because the system never reaches an absorbing
as in the (211) dimensions. At very low temperatures

FIG. 2. Root mean square of the functionW as a function of
time t, measured in MCs, forq55, L5200 for a selected sample
T50.085, and the surface width does not saturate. The symboO
over the plateaux represent the orientations of the particles. For
very low temperature,b50.99.
8-3
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(211) dimensions, the fluctuations in the orientation a
only of short range, and do not allow the system to esc
from the absorbing state.

Figure 3~a! is a typical plot of the functionW(L,t), for
q52, for all the studied lattice sizes at zero temperat
where the saturation is observed. The data of Fig. 3~a! can be
collapsed into a single curve that fits very well to the Fami
Vicsek scaling relation. Then, Fig. 3~b! shows the data col
lapse, and from which we can find the critical indices for t
growth. For theq52 case of Fig. 3~b!, the best values of the
exponents that allow this fitting arez52.00 anda51.90. As
expected from the Family-Vicsek scaling law, the expone
a, b, andz are not all independent. As we can see from o
datab5a/z.

Finally, in Fig. 4, we show the values we have found f
the growth exponentb as a function of temperature andq.
We observe that the behavior of this exponent as a func
of temperature is almost insensitive to the values ofq. For
temperatures less than 0.25,b50.9960.01, however, it is a
decreasing function ofT and, at high temperatures, the e
ponent becomes 1/2, as for the random deposition mode
we have pointed before, for any temperature different fr
zero, the fluctuations do not allow for a saturation of t

FIG. 3. ~a! Surface widthW as a function of timet, measured in
MCs, for q52, L5100, 200, 300, 400, and 500, andT50. Aver-
ages are over 150 samples.~b! Data collapse of~a! according to the
Family-Vicsek scaling relation. Diamonds (L5500), squares (L
5400), down triangles (L5300), circles (L5200), and up tri-
angles (L5100).
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surface for the times of observation we have consider
Therefore, this growing system does not exhibit a text
with a well defined orientation of the deposited particles
any finite temperature.

IV. CONCLUSIONS

We have considered a very simple model to describe
texture evolution of the deposits formed by electrodeposit
processes. In our model particles are randomly depos
onto a substrate, and they locally relax with their main ax
pointing in a given direction. The final orientation depen
on the substrate temperature and interaction energy with
neighboring particles. The lowest energy states of the sys
correspond to nearest neighbor particles oriented in the s
direction. The model is mimicked by a Potts model ofq
states, whereq gives the possible directions for the orient
tion of the particles. We recorded the orientations for ea
line and calculated the mean orientation and fluctuations
function of time, size of the system, and number of orien
tions. We have investigated the casesq52, 3, 4, and 5 for
the lattice sizesL5100, 200, 300, 400, and 500. At zer
temperature this growth model satisfies the well kno
Family-Vicsek scaling relation for all the values ofq, and our
estimate for the exponentsa and z is a51.8060.15 andz
51.9060.15. The growth exponent that characterizes
system behavior at the initial times isb50.9960.01. At
high temperatures we noted that the surface width does
saturate, and the system does not exhibit a texture wit
well defined orientation of the deposited particles. In the
cases the layers are occupied for all the possible orientati
which is characteristic of the random deposition mod
where we foundb51/2 for the growth exponent. On th
other hand, at low temperatures, the system never enters
an absorbing state, with a well defined texture. We obser
quasisteady states just during short time intervals. Fluc
tions in orientation in this (111) system are always prese

FIG. 4. Behavior of the growth exponentb as a function ofT
for different values of the number of orientationsq. Squares (q
55), Down triangles (q54), circles (q53), and up triangles (q
52). The line is just a guide to the eyes.
8-4
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at any finite temperature, which prevent the system fr
reaching an absorbing state. We have also seen that th
crease in the surface width when we left any plateau wit
well defined orientation is given byb50.9960.01, the same
growth exponent as that found at zero temperature.
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